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ABSTRACT

In this paper, a novel introspective learning strategy for re-
mote sensing scene classification is proposed. Through this
strategy, the neural network used for classification can intro-
spectively generate negative samples. In most training deep
neural networks, negative samples are rarely noticed. We are
the first to actively introduce negative samples into the remote
sensing scene classification tasks. The goal of this paper is to
analyze the effect of introspective negative samples on remote
sensing scene classification tasks. Experiments demonstrate
that the introduction of negative samples in training can ef-
fectively improve the classification accuracy and robustness.
In addition, we found that our method can effectively against
invalid remote sensing images.

Index Terms— Scene classification, Remote sensing,
Deep learning, Negative samples, Introspective strategie

1. INTRODUCTION

Recently, more and more people are paying attention to the
scene classification problem of remote sensing images be-
cause of its wide range of application[1, 2]. A key step, en-
countered in almost all computer vision problems, is the de-
sign and extraction of features. In the early years, substantial
efforts have been put to design handcrafted features, and there
are a lot of techniques for calculating visual features, such
as color histograms, scale-invariant feature transform (SIFT)
and bag-of-visual-words (BoVW). Although these techniques
for extracting features have yielded exciting results in many
domains, these techniques cannot be directly applied in the re-
mote sensing domain[3], due to the complexity and particular-
ity of remote sensing images. However, the abovementioned
feature extraction method cannot meet our requirements, for
the task of scene classification of remote sensing images.
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In the past few years, deep learning has developed rapidly
and is now the preferred solution for dealing with visual prob-
lems. It replaces previous handcrafted features in many areas
because it can learn many advanced features[4]. Given deep
learning’s powerful ability to process data, it is now widely
used in various fields, including remote sensing. Deep learn-
ing based methods have achieved the best results in more and
more remote sensing applications. In the scene classification
task concerned in this paper, many methods based on deep
learning are proposed and and achieved good results., such
as Fusion by Addition[5], D-CNN[6], AttNet[7], etc. But the
datasets used in these previous work did not contain all the
image categories that the real world might encounter. When
encountering an image of a category other than the datasets,
the networks proposed by the previous works will output a
wrong result. The method proposed in this paper will effec-
tively solve this problem.

Many remote sensing image datasets are relatively small.
It’s a conventional strategy, in training neural network, to use
data enhancement, which refers to the use of some means to
expand the number of positive samples. However, the require-
ment of using negative samples is rarely noticed. Recent stud-
ies have shown that negative samples have a significant im-
pact on the improvement of accuracy in the classification task.
Inspired by [8], in which self-generated negative samples are
utilized, we proposes an introspective learning strategy to deal
with remote sensing scene classification tasks. In this strat-
egy, the classification network also has the ability to gener-
ate. Specifically, our method iteratively expands the number
of the negative sample during training, compared to the nor-
mal classification network. Also, we expand a new category
in the dataset by using the negative samples of all categories.
Therefore, theK-class classification task becomes a (K+1)-
class classification task.

To conclude our introduction, we propose an introspective
learning strategy for remote sensing scene classification. The
contributions of this work can be summarized as follows:

(1) We introduced introspective strategies to enable the
classification network to have the ability to generate negative
samples at the same time.



(2) Experiments prove that the introduction of negative
samples in training can effectively improve the classification
accuracy.

(3) Using negative samples as a new category can ef-
fectively cope with images of categories not included in the
dataset.

2. OUR METHOD

The whole framework of our method is illustrated by Fig. 1,
which consists of two parts. The red arrow from left to right
indicates the classification parts, and the blue arrow from right
to left indicates the introspection part. The two parts are con-
stantly alternating.

We define x as the input vector and y ∈ {1, ...,K} as its
label. Below we will discuss the binary classification problem
first, in which y ∈ {−1,+1}. p (y|x) is the probability that
x belongs to class y. p (x|y = +1) corresponds to the distri-
bution of positive samples, and p (x|y = −1) corresponds to
the distribution of negative samples. Under the Bayes rule:

p(x|y = +1) =
p(y = +1|x)p(y = −1)
p(y = −1|x)p(y = +1)

p(x|y = −1),

(1)
when assuming equal priors p(y = −1) = p(y = +1), and
p(y = −1|x) + p(y = +1|x) = 1:

p(x|y = +1) =
p(y = +1|x)

1− p(y = +1|x)
p(x|y = −1). (2)

The relationship between positive and negative samples
can be seen from Eq. (2).

We define pi(y|x) represents the classification result of
the network calculation in the i-th iteration. Obviously, in an
ideal situation, limi→∞ pi(y|x) = p(y|x). However, in many
cases, limi→∞ pi(y|x) cannot approximate the true probabil-
ity p(y|x) for various reasons. One reason that is often en-
countered is that there are not enough samples in the training
set, which means that x ∼ p(x|y = +1) have few samples.
Many previous attempts have been to enhance the accuracy of
the classifier by extending the positive samples of the dataset
through data enhancement. But in this article, we try to sam-
ple negative samples x ∼ p(x|y = −1) by introspection to
improve the classifier.

Now suppose Si = {(xj , yj), j = 1..n} is the dataset
used for training and p−i (x) is p(x|y = −1) obtained by in-
trospection and S−i = {xj |xj ∈ p−i (x)} is the sample set
obtained by sampling p−i (x). At each time i, we do the fol-
lowing calculation:

p−i (x) =
1

Zi

pi(y = +1|x)
qi(y = −1|x)

p−i−1(x), (3)

S−i = {(xj , yj = −1), j = 1..l,xj ∈ p−i (x)}, (4)

Si = Si−1 ∪ S−i . (5)

Then training the classifier on Si. Where

Zi =

∫
pi(y = +1|x)
pi(y = −1|x)

p−i−1(x)dx, (6)

S0 is the original dataset. In the experiment we make p−0 (x)
obey a Gaussian distribution.

Eq. (3) and Eq. (4) represent the process of introspection,
which is the process of the blue arrow in Fig.1.

2.1. Classification Part

The classification part is the same as training a normal neural
network on Si. The parameters (weights) of the entire neural
network are recorded as Wi. Wi is learned by the gradient
descent method to minimize the cross-entropy loss. We use
the loss function as follows:

L(Wi) = −
∑

(xj ,yj)∈Si

log pi(yj |xj ;Wi). (7)

In our framework, the classification network can be di-
vided into feature extraction layer and the last full connected
layer. In the experiment we tried multiple network structures,
such as VGG-16[9], ResNet[10] and, etc., as our feature ex-
traction layer. Specific experimental results in the Sec. 3.

2.2. Introspection Part

The process of introspection is to use the ability of the cur-
rent classifier to reverse the distribution of negative samples.
Update Eq. 3 to:

p−i (x) =
1

Zi

pi(y = +1|x;Wi)

qi(y = −1|x;Wi)
p−i−1(x). (8)

Similarly, we use the gradient descent method to minimize the
cross entropy loss to find negative samples x ∼ p−i (x). Now
we introduce a new set Xi = {xj , j = 1..l,xj ∈ p−i−1(x)}.
Here the loss function is defined as:

L(Xi) = −
∑

xj∈Xi

log pi(y = +1|xj ;Wi). (9)

At this point, we fixed the previously learned network param-
eters (weights) Wi , but instead optimized the input set Xi.
When the loss error is less than a certain threshold α, we can
think that Xi is S−i in the Eq. (4). Obviously, the datas con-
tained in X0 are some vectors obeying the Gaussian distribu-
tion.

2.3. Multiple Classification

In order to clarify the principle, the above discussion is based
on binary classification. But in the experiment of remote sens-
ing scene classification, we are doing multi-classification. To
achieve this, we extend the dataset containing K categories
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Fig. 1. Overview of the components of our proposed strategy. The red arrow from left to right indicates the training process of
the common classifier, and the blue arrow from right to left indicates the process of finding the input data that minimizes the
loss (training the input data), where the network parameters are frozen.

to the K + 1 categories. Negative samples of all categories
together form the (K + 1)-th class. And we add the softmax
layer after the fully connected layer of the network structure.
The change in data distribution during the running of the al-
gorithm can be described as Fig. 2.
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Fig. 2. An example (a four-class classification task) of clas-
sification boundaries change when generating negative sam-
ples.

3. EXPERIMENTS

3.1. Experimental Datasets

The UC Merced Land-Use (UCM) dataset[11] is one of the
first ground truth datasets derived from a publicly available
high resolution overhead image[7]. It contains 2100 images in
21 categories (each containing 100 images). Each is an RGB
image with a resolution of 256 ∗ 256 pixels. Many methods
of remote sensing classification use this dataset to test perfor-
mance because it is challenging.

3.2. Experimental Details

In the experiment, we tried different networks as our feature
extraction layer. As shown in Fig. 1., after the feature extrac-
tion layer is a two-layers fully connected layer and a softmax
layer. The algorithm can be divided into two parts alternately:
the classification part and the generation of the negative sam-
ple part. A classification part contains 20 epochs. In the intro-
spection part, each Xi set contains 210 vectors, which corre-
spond to 10 negative samples for each category. To reduce the
time it takes to generate negative samples, we set the thresh-
old α to 1.2. When testing on UCM Dataset we put 80% of
the data into training, and the remaining 20% of the data as a
test set. Meanwhile, we use overall accuracy and confusion
matrix as evaluation methods for experimental results, and all
implementations in this paper are based on PyTorch with four
NVIDIA Titan X.

Table 1. Results of different methods with the UCM Dataset
Methods Accuracy (%)

Combing Scenarios I and II[12] 98.49
CNN-NN[13] 97.19
VGG-16[9] 96.19
ResNet[10] 96.43
AttNet[7] 99.05

GoogLeNet[9] 95.02
VGG-16 with Our method 98.57
ResNet with Our method 98.57
AttNet with Our method 99.30



3.3. Experimental Results

The comparison between our proposed method and some
state-of-art methods is shown in Table. 1. As can be seen in
this table, the proposed introspective strategy can effectively
improve the accuracy of remote sensing scene classification
task. The accuracy of VGG-16 has increased by 2.38%, by
putting it into our proposed framework. Similarly, ResNet
also has a 2.14% accuracy boost.

The confusion matrix of VGG-16 with our method using
80% training rates on UCM Dataset is shown in Fig. 3. We
use 740 images from the ’Desert’ and ’Mountain’ classes in
the Aerial Image Dataset[9] as the Invalid class here. It is
obvious from the confusion matrix that all unrelated images
have no effect on the accuracy of our classifier.

Fig. 3. The confusion matrix with UCM Dataset Under the
training ratio of 80%.

4. CONCLUSION

This paper introduces a novel introspective learning strategy
for remote sensing scene classification, focuses on the im-
provement of accuracy by negative samples. We fine-tune
multiple networks to apply our proposed strategy. Experi-
mental results on UCM Dataset show that our method can
improve classification accuracy and effectively against invalid
images.

5. ACKNOWLEDGEMENT

This work was supported by the National Natural Science
Foundation of China under Grant U1864204 and 61773316,
Natural Science Foundation of Shaanxi Province under Grant
2018KJXX-024, and Project of Special Zone for National De-
fense Science and Technology Innovation.

6. REFERENCES

[1] Q. Wang, X. He, and X. Li, “Locality and structure regularized
low rank representation for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, pp. 1–
13, 2018.

[2] Q. Wang, S. Liu, J. Chanussot, and X. Li, “Scene classifi-
cation with recurrent attention of vhr remote sensing images,”
IEEE Transactions on Geoscience and Remote Sensing, pp. 1–
13, 2018.

[3] Keiller Nogueira, Otávio AB Penatti, and Jefersson A dos San-
tos, “Towards better exploiting convolutional neural networks
for remote sensing scene classification,” Pattern Recognition,
vol. 61, pp. 539–556, 2017.

[4] J. Yu, C. Hong, Y. Rui, and D. Tao, “Multitask autoencoder
model for recovering human poses,” IEEE Transactions on In-
dustrial Electronics, vol. 65, no. 6, pp. 5060–5068, June 2018.

[5] Souleyman Chaib, Huan Liu, Yanfeng Gu, and Hongxun Yao,
“Deep feature fusion for vhr remote sensing scene classifica-
tion,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 55, no. 8, pp. 4775–4784, 2017.

[6] Gong Cheng, Ceyuan Yang, Xiwen Yao, Lei Guo, and Jun-
wei Han, “When deep learning meets metric learning: remote
sensing image scene classification via learning discriminative
cnns,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 56, no. 5, pp. 2811–2821, 2018.

[7] Shaoteng Liu, Qi Wang, and Xuelong Li, “Attention based
network for remote sensing scene classification,” in IGARSS
2018-2018 IEEE International Geoscience and Remote Sens-
ing Symposium. IEEE, 2018, pp. 4740–4743.

[8] Kwonjoon Lee, Weijian Xu, Fan Fan, and Zhuowen Tu,
“Wasserstein introspective neural networks,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018.

[9] Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai,
Yanfei Zhong, Liangpei Zhang, and Xiaoqiang Lu, “Aid: A
benchmark data set for performance evaluation of aerial scene
classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 7, pp. 3965–3981, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in The IEEE
Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[11] Yi Yang and Shawn Newsam, “Bag-of-visual-words and spa-
tial extensions for land-use classification,” in Proceedings of
the 18th SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM, 2010, pp. 270–279.



[12] Fan Hu, Gui-Song Xia, Jingwen Hu, and Liangpei Zhang,
“Transferring deep convolutional neural networks for the scene
classification of high-resolution remote sensing imagery,” Re-
mote Sensing, vol. 7, no. 11, pp. 14680–14707, 2015.

[13] Esam Othman, Yakoub Bazi, Naif Alajlan, Haikel Alhichri,
and Farid Melgani, “Using convolutional features and a sparse
autoencoder for land-use scene classification,” International
Journal of Remote Sensing, vol. 37, no. 10, pp. 2149–2167,
2016.


